首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43623篇
  免费   5978篇
  国内免费   3125篇
电工技术   4034篇
技术理论   1篇
综合类   3489篇
化学工业   10405篇
金属工艺   5170篇
机械仪表   1702篇
建筑科学   1114篇
矿业工程   794篇
能源动力   1678篇
轻工业   2568篇
水利工程   1075篇
石油天然气   1933篇
武器工业   392篇
无线电   6501篇
一般工业技术   6086篇
冶金工业   3014篇
原子能技术   484篇
自动化技术   2286篇
  2024年   93篇
  2023年   835篇
  2022年   1223篇
  2021年   1541篇
  2020年   1681篇
  2019年   1610篇
  2018年   1477篇
  2017年   1752篇
  2016年   1771篇
  2015年   1739篇
  2014年   2474篇
  2013年   2710篇
  2012年   3043篇
  2011年   3027篇
  2010年   2167篇
  2009年   2410篇
  2008年   2209篇
  2007年   2748篇
  2006年   2609篇
  2005年   2164篇
  2004年   1809篇
  2003年   1760篇
  2002年   1512篇
  2001年   1336篇
  2000年   1150篇
  1999年   891篇
  1998年   795篇
  1997年   703篇
  1996年   579篇
  1995年   564篇
  1994年   483篇
  1993年   346篇
  1992年   320篇
  1991年   250篇
  1990年   230篇
  1989年   214篇
  1988年   104篇
  1987年   66篇
  1986年   60篇
  1985年   43篇
  1984年   54篇
  1983年   30篇
  1982年   36篇
  1981年   30篇
  1980年   26篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1975年   5篇
  1951年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Relaxor ferroelectrics are attracting an increasing interest in the application of pulse power systems due to their excellent energy storage performance. In this paper, the (1-x)(Ba0·85Ca0.15)(Zr0·1Ti0.9)O3-xBi(Mg0·5Ti0.5)O3 ((1-x)BCZT-xBMT, x ≤ 0.2) relaxor ceramics are prepared by the solid state method. The influence of BMT on the microstructure, dielectric and energy storage properties of the prepared ceramics is investigated. The XRD results show that the peak intensity of impurities (Bi2O3, TiO2 and Ba2Bi4Ti5O18) is gradually stronger than that of BCZT phase with x increasing. Meanwhile, the grain size of (1-x)BCZT-xBMT ceramics gradually increases on account of the appearance of impurities Bi2O3. Influenced by the impurities and BMT, the dielectric constant of prepared ceramics gradually decreases with x increasing. A large Wrec value of 0.65 J/cm3 with an ultrahigh η value of 97.89% is achieved at x = 0.15 due to the high breakdown strength and slim P-E hysteresis loop. Meanwhile, the η is insensitive to the electric field. The ultrahigh η leads to lesser energy loss during the charge and discharge process. It makes the 0.85BCZT-0.15BMT ceramic more attractive in the application of pulse power systems.  相似文献   
72.
The morphotropic composition of the lead-free solid solution between Na0.5Bi0.5TiO3 and BaTiO3 (0.94 Na0.5Bi0.5TiO3-0.06 BaTiO3 or NBT-6BT) is of particular interest for the next generation of high-temperature capacitors but remains plagued by the diversity of dielectric properties reported in the literature. In order to explain the apparent inconsistencies among the reported dielectric properties of NBT-6BT, we examine the influence of stoichiometry, phase separation, and metallization method. We show that the nominal stoichiometry has a crucial effect, since increasing the nominal Na/Bi ratio increases conductivity and dielectric losses (tan δ). It also increases the real part of the permittivity (ε’) and the frequency dispersion of both ε’ and tan δ, thereby altering the shape of the evolution with temperature of the dielectric properties. Moreover it increases the depolarization temperature (Td) and decreases the temperature of maximum permittivity (Tm). Phase separation also occurs during the synthesis of NBT-6BT as Na evaporation leads to the formation of secondary Ba-containing phases. We report that these phases can have a positive impact on the dielectric properties: a moderate volume fraction (2.5 to 3.0%) and average grain surface (0.9 to 3.0 µm2) of these secondary Ba-containing phases increase the relative permittivity, decrease the dielectric losses, and increase the insulation resistance. We also show that the metallization method impacts the dielectric properties and therefore may contribute to the differences between various reports. The dielectric properties of NBT-6BT samples are measured during successive heating/cooling cycles and reveal that the permittivity value is lower during the first heating when silver paste, even cured, is used. These three components contribute to explaining the diversity of the reported dielectric properties of NBT-6BT.  相似文献   
73.
A detailed study of butyl rubber-based vibration damping formulations linking their composition, morphology, phase structure, viscosity, mechanical loss factor, and other characteristics is presented for the first time. High performance of the compositions including aromatic petroleum oil is explained by limited solubility of the plasticizer that leads to the formation of a highly-viscous emulsion (η20°C ≈ 1000 Pa·s) consisting of a swollen butyl rubber matrix and dispersed oil droplets in the broad composition range. Chalk is found to be the best inorganic filler as its spherical particles provide strong adhesion to the reinforcing layer of aluminum foil. Aiming to eliminate ecologically unfriendly aromatic compounds, a new low-cost binding agent formulation based on butyl rubber mixed with polyisobutylene and highly refined mineral oil is suggested. Being environmentally safe, it possesses high viscosity of 1000–3000 Pa·s, cohesion strength of 3.5–5.0 N/cm, penetration of 4.5–6.0 mm, and mechanical loss factor up to 0.34 at room temperature, which are as good as, or even better than, the properties of currently produced vibration damping materials containing aromatic compounds. New materials can be used in car and aircraft parts for effective vibration isolation.  相似文献   
74.
AsSb alloy (0.70–95.81 wt.% As) was prepared by electrodeposition in As(III) and Sb(III) contained electrolytes. The influence of electrolyte composition, hydrochloric acid concentration, and temperature on the composition and structure of AsSb deposits was studied. The electroreduction mechanism of As(III) and Sb(III) in hydrochloric acid solution was revealed via thermodynamic analysis. The results show that the increase of H+ concentration promotes the reduction of As(III), while the increase of Cl concentration significantly inhibits the reduction of Sb(III). As a result, the As content in deposits increases gradually with the increase of hydrochloric acid concentration. Simultaneously, the phase structure of AsSb deposits evolves from crystalline to amorphous. When the As content is 24.55–33.75 wt.%, AsSb mixed crystal is obtained. The electrolysis temperature has little effect on the deposits composition, but the structure of deposits evolves from crystalline to amorphous with decreasing the temperature.  相似文献   
75.
76.
The thermal stability and decomposition mechanisms of Fe2AlB2 powders, synthesized by reactive powder metallurgy, were studied under nitrogen (N2) or argon (Ar) atmospheres. The effects of using different FeB precursors to synthesize the Fe2AlB2 and hydrochloric acid (HCl) purification treatments on the thermal stability were also investigated. When as-synthesized Fe2AlB2 powders are treated in dilute HCl to dissolve impurity phases, decomposition in N2 atmospheres occurs readily above 1200 K. The decomposition reaction involves β-FeB precipitation and the liberated Al atoms reacting with the ambient N2 to form AlN. Under Ar environments, HCl-treated Fe2AlB2 powders decompose and precipitate β-FeB, by the out-diffusion of Al from the nanolaminated structure. Interestingly, isothermal annealing under N2 atmospheres revealed that Fe2AlB2 was more thermally stable when synthesized from lab-synthesized, instead of commercially available, FeB precursors and when the HCl treatment was avoided. The effects of the various factors on the decomposition temperature and decomposition mechanisms are discussed herein.  相似文献   
77.
Dicalcium silicate, which is found in steelmaking slag for dephosphorization, exists as the hexagonal α phase at high temperatures. The α-dicalcium silicate forms a solid solution with tricalcium phosphate in the entire composition range, although the reason for high solubility of phosphorus remains unclear in view of the crystal structure. It has previously been reported that the crystal structure of α-dicalcium silicate consists of a symmetric arrangement of Ca2+ ions and SiO44− tetrahedra, although other polymorphs exhibit asymmetric arrangements. However, because the occupation probability of each atomic site in the α polymorph is not limited to unity, it has not been qualified how these ions are exactly arranged. In this study, the ionic distribution in the α polymorph of dicalcium silicate was evaluated by first-principles calculation based on density functional theory (DFT), as well as by molecular dynamics (MD) simulation with a polarizable ion model optimized by DFT calculation. The results indicated that the completely symmetric ionic arrangement, as reported for the α phase, is the most unstable. Electronic-state calculation and MD simulation indicated that a highly disordered ionic arrangement spontaneously forms in the α-phase crystal for structure relaxation when held at high temperatures, or when phosphorus is incorporated.  相似文献   
78.
为克服单一微生物培养成本高且矿化鲁棒性不足的缺陷,提出了一种混菌矿化增强再生粗骨料物理力学性能的方法.通过筛选矿化效率较高的好氧嗜碱混菌,考察了混菌矿化对再生粗骨料物理力学性能和混凝土抗压强度的影响.结果表明:相同增强时间下,混菌比纯菌呈现出更优异的矿化增强效果;随着混菌矿化增强时间的延长,再生粗骨料吸水率和压碎指标呈现出先减小后增大的趋势,最优增强时间为15 d;采用矿化增强再生粗骨料制备的再生混凝土抗压强度提高幅度达到22.1%.  相似文献   
79.
In this study, alumina-based composite with 12 wt% Al and 16 wt% Si3N4 was designed to achieve the synthesis of 15R-Sialon reinforced alumina composite. To investigate the reaction mechanism, two-step sintered Al-Si3N4-Al2O3 samples at different temperatures ranging from 600°C to 1500°C were prepared and characterized via X-ray diffraction and scanning electron microscope (SEM). The results revealed that 15R-Sialon was synthesized at 1500°C through a novel liquid Si phase sintering and Si3N4 played as a precursor and a reactant. First, Si3N4 precursor reacted with Al to form intermediate phases AlN and Si, which were not further transformed below 1400°C. When the sintering temperature was 1500°C, the formed Si presented as a liquid phase, under the influence of which plate-like15R-Sialon was generated from Al2O3, residual Si3N4, and derived AlN. The obtained Si was also involved in the synthesis of 15R-Sialon and completely transformed. In addition to the AlN from Si3N4, the AlN deriving from the nitridation of Al may not react with liquid Si. Compared to 15R-Sialon from liquid Si, plate-like 15R-Sialon with smaller size was generated from AlN, SiO, and O2.  相似文献   
80.
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e. allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens. The present study evaluates the feasibility of microbially induced calcium carbonate precipitation (MICP) technique to mitigate wind-induced erosion of calcareous desert sand (Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36 °C to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina (S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing (in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure (including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope (SEM), and energy-dispersive X-ray spectroscope (EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in 15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust, bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号